Electrochemical Fabrication of Functional Gelatin-Based Bioelectronic Interface.
نویسندگان
چکیده
Gelatin remains one of the most important biopolymeric material platforms because of its availability, safety, biocompatibility, biodegradability, and stimuli-responsive properties. Here we report a simple, rapid, and reagentless anodic deposition method to assemble gelatin hydrogels from aqueous salt solutions onto an electrode surface. Results indicate that anodic reactions partially oxidize gelatin to yield a covalently cross-linked network that can perform multiple functions. First, anodically deposited gelatin remains activated, allowing covalent protein grafting and thus enabling biofunctionalization for electrochemical biosensing. Second, the anodically deposited gelatin retains its thermally responsive physical cross-linking properties that enable switching functions. Finally, the physical and chemical cross-linking mechanisms are reversible, which enables self-healing functions. Thus, anodic deposition provides a facile method to assemble gelatin-based multifunctional matrices for diverse applications in bioelectronics.
منابع مشابه
Fabrication of an Electrochemical Immunosensor for Determination of Human Chorionic Gonadotropin Based on PtNPs/Cysteamine/AgNPs as an Efficient Interface
An ultrasensitive electrochemical immunosensor for the detection of tumor marker human chorionic gonadotropin (hCG) was developed with a limit of detection as low as 2 pg mL-1 in phosphate buffer. The Platinum nanoparticles (PtNPs) were electrodeposited to modify the gold surface and to increase enlarging the electrochemically active sites, resulting in the facilitation of electron exchange. Cy...
متن کاملRenewable dehydrogenase-based interfaces for bioelectronic applications.
Bioelectronic interfaces that establish electrical communication between redox enzymes and electrodes have potential applications as biosensors, biocatalytic reactors, and biological fuel cells. However, these interfaces contain labile components, including enzymes and cofactors, which have limited lifetimes and must be replaced periodically to allow long-term operation. Current methods to fabr...
متن کاملDesign and Fabrication of Glucose/O2 Enzymatic Biofuel Cell
Enzyme-based biofuel cells (EBFCs) are systems that use a variety of organic compounds to produce electricity through oxido-reductase enzymes, such as oxidase or dehydrogenase as biocatalysts immobilized on electrodes. In this study, a single-chamber EBFC consisting of carbon electrodes that operating at ambient temperature in phosphate buffer, pH 7 is reported. The EBFC anode was based on gluc...
متن کاملInterfacing nanomaterials for bioelectronic applications
The integration of nanomaterials as a bridge between the biological and electronic worlds has revolutionised understanding of how to generate functional bioelectronic devices and has opened up new horizons for the future of bioelectronics. The use of nanomaterials as a versatile interface in the area of bioelectronics offers many practical solutions and has recently emerged as a highly promisin...
متن کاملPost-CMOS electrode formation and isolation for on-chip temperature-controlled electrochemical sensors
Introduction: Recent advances in protein-based biomimetic and bioelectronic interfaces on metal electrodes [1] generate an opportunity to form integrated electrochemical sensors that can simultaneously measure multiple analytes for a wide range of molecular analysis applications. The proteins within these biointerfaces show optimal sensitivity at different temperatures, typically between room t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomacromolecules
دوره 17 2 شماره
صفحات -
تاریخ انتشار 2016